Proteomics Quality Control: Quality Control Software for MaxQuant Results.
نویسندگان
چکیده
Mass spectrometry-based proteomics coupled to liquid chromatography has matured into an automatized, high-throughput technology, producing data on the scale of multiple gigabytes per instrument per day. Consequently, an automated quality control (QC) and quality analysis (QA) capable of detecting measurement bias, verifying consistency, and avoiding propagation of error is paramount for instrument operators and scientists in charge of downstream analysis. We have developed an R-based QC pipeline called Proteomics Quality Control (PTXQC) for bottom-up LC-MS data generated by the MaxQuant software pipeline. PTXQC creates a QC report containing a comprehensive and powerful set of QC metrics, augmented with automated scoring functions. The automated scores are collated to create an overview heatmap at the beginning of the report, giving valuable guidance also to nonspecialists. Our software supports a wide range of experimental designs, including stable isotope labeling by amino acids in cell culture (SILAC), tandem mass tags (TMT), and label-free data. Furthermore, we introduce new metrics to score MaxQuant's Match-between-runs (MBR) functionality by which peptide identifications can be transferred across Raw files based on accurate retention time and m/z. Last but not least, PTXQC is easy to install and use and represents the first QC software capable of processing MaxQuant result tables. PTXQC is freely available at https://github.com/cbielow/PTXQC .
منابع مشابه
Visualization of LC‐MS/MS proteomics data in MaxQuant
Modern software platforms enable the analysis of shotgun proteomics data in an automated fashion resulting in high quality identification and quantification results. Additional understanding of the underlying data can be gained with the help of advanced visualization tools that allow for easy navigation through large LC-MS/MS datasets potentially consisting of terabytes of raw data. The updated...
متن کاملQuantitative Cross-linking/Mass Spectrometry Using Isotope-labeled Cross-linkers and MaxQuant*
The conceptually simple step from cross-linking/mass spectrometry (CLMS) to quantitative cross-linking/mass spectrometry (QCLMS) is compounded by technical challenges. Currently, quantitative proteomics software is tightly integrated with the protein identification workflow. This prevents automatically quantifying other m/z features in a targeted manner including those associated with cross-lin...
متن کاملUnsupervised Quality Assessment of Mass Spectrometry Proteomics Experiments by Multivariate Quality Control Metrics.
Despite many technological and computational advances, the results of a mass spectrometry proteomics experiment are still subject to a large variability. For the understanding and evaluation of how technical variability affects the results of an experiment, several computationally derived quality control metrics have been introduced. However, despite the availability of these metrics, a systema...
متن کاملmsVolcano: A flexible web application for visualizing quantitative proteomics data
UNLABELLED We introduce msVolcano, a web application for the visualization of label-free mass spectrometric data. It is optimized for the output of the MaxQuant data analysis pipeline of interactomics experiments and generates volcano plots with lists of interacting proteins. The user can optimize the cutoff values to find meaningful significant interactors for the tagged protein of interest. O...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of proteome research
دوره 15 3 شماره
صفحات -
تاریخ انتشار 2016